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Decision-making in a natural environment depends on a hierarchy of
interacting decision processes. A high-level strategy guides ongoing
choices, and the outcomes of those choices determine whether or not
the strategy should change. When the right decision strategy is
uncertain, as in most natural settings, feedback becomes ambiguous
because negative outcomes may be due to limited information or bad
strategy. Disambiguating the cause of feedback requires active in-
ference and is key to updating the strategy. We hypothesize that the
expected accuracy of a choice plays a crucial rule in this inference, and
setting the strategy depends on integration of outcome and expecta-
tions across choices. We test this hypothesis with a task in which
subjects report the net direction of random dot kinematograms with
varying difficulty while the correct stimulus−response association un-
dergoes invisible and unpredictable switches every few trials. We
show that subjects treat negative feedback as evidence for a switch
but weigh it with their expected accuracy. Subjects accumulate switch
evidence (in units of log-likelihood ratio) across trials and update their
response strategy when accumulated evidence reaches a bound. A
computational framework based on these principles quantitatively ex-
plains all aspects of the behavior, providing a plausible neural mech-
anism for the implementation of hierarchical multiscale decision
processes. We suggest that a similar neural computation—bounded
accumulation of evidence—underlies both the choice and switches in
the strategy that govern the choice, and that expected accuracy of a
choice represents a key link between the levels of the decision-
making hierarchy.
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Goal-directed behavior in natural settings depends on a hierar-
chy of decision processes. Higher-level decision strategies es-

tablish potential actions and expected outcomes for lower-level
choices about incoming stimuli (1, 2). However, the correct strategy
is rarely known a priori, and must be inferred from the outcome of
decisions. As a result, the cause of negative outcomes is often am-
biguous. An error could be due to a poor decision strategy, in which
case the strategy should be promptly revised, or an error may be due
to limited information, in which case the underlying strategy may still
be sound. This ambiguity is particularly problematic because the
environment can change without warning, altering the true associa-
tions between choices and outcomes and rendering a previously
good strategy ineffective. Resolving the cause of negative feedback
requires one to make inferences about strategy over multiple
choices, but the mechanisms by which lower-level choices interact
with higher-level decisions about strategy are poorly understood.
Expected accuracy in our choices (i.e., choice confidence) can be

an important source of information for disambiguating negative
feedback. If choices begin to yield negative outcomes despite
strong positive expectations, then this provides strong evidence that
the strategy must change. For example, consider a physician
treating a patient based on an initial diagnosis. If the doctor knows
that a treatment is highly effective for this ailment, but the patient’s
health still declines, then this provides strong evidence that the
diagnosis should be reconsidered. Alternatively, if the treatment is

known to be unreliable, then the doctor may persist with other
treatment options before reconsidering the diagnosis. At the core
of this example and many similar hierarchical decisions is the use of
confidence to set the decision strategy and guide future behavior.
Recent behavioral, computational, and neurophysiological

studies have provided key insights into the mechanisms by which
choice confidence is computed and represented (3–11). However,
these studies do not shed light on how this representation supports
higher-level decisions about strategy. Conversely, although various
models have been developed to explain revisions of strategy in
dynamic environments (12–21), these models rarely explore the
form of interactions with lower-level decision processes.
We developed a novel task and computational framework to

understand how interactions across a hierarchy of decision processes
support adaptive regulation of behavior in a dynamically changing
environment. Subjects made decisions about the net direction of a
random dot motion stimulus, and the environment determined the
subset of eye movement targets that they should use to report their
choice. The environment was not cued, and it changed without any
warning after several trials, requiring subjects to determine when
their decision strategy should switch from persisting in the old en-
vironment to exploring a new one. Subjects’ environment choices
revealed a long-term influence of both outcomes and confidence of
their perceptual decisions. These observations motivated a compu-
tational framework that simultaneously explains both lower- and
higher-level choices based on three key principles: (i) lower-level
choices are based on integration of sensory evidence within trials,
(ii) lower-level choices are associated with a subjective confidence
that reflects the expected likelihood of success, and (iii) higher-level
choices are based on integration of outcomes and choice confidence
across multiple trials. We show that these three principles can be
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understood as a neurally plausible implementation of the Bayes
optimal solution to the task. The framework demonstrates that
adaptive behavior in dynamic environments can be understood as a
hierarchy in which both lower- and higher-level decision processes
integrate information over distinctly different timescales, and choice
confidence is a key connection across these levels. We use our task
and framework to establish key properties of these integration pro-
cesses and shed light on mechanisms of adaptive decision-making.

Results
Six human subjects performed a task in which they adapted their
decision strategy in response to unpredictable changes in the envi-
ronment. In this “changing environment” task (Fig. 1A), subjects
viewed a patch of stochastic moving dots (22) and reported the net
motion direction (right or left) with a saccadic eye movement to a
corresponding peripheral target. However, unlike conventional di-
rection discrimination tasks, subjects were provided with two
rightward and two leftward targets. The targets were arranged in
two right−left pairs above and below the dot patch and represented
two distinct environments. On each trial, only one environment was
correct. The correct environment stayed fixed for several trials and
then changed without an explicit signal to subjects (Fig. 1B). In
addition to changes in the environment, we controlled the difficulty
of the motion direction discrimination by randomly varying motion
strength and duration across trials. Subjects received positive feed-
back only if their chosen target corresponded to both the correct
motion direction and the correct environment. Negative feedback,
however, could arise from choosing the wrong environment or di-
rection target. Therefore, to determine when to shift their decision
strategy from persisting in the old environment to exploring the new
one, subjects needed to resolve ambiguous negative feedbacks
based on the history of the experienced sensory evidence, choices,
and feedbacks.
Before engaging in the changing environment task, subjects were

introduced to a simple direction discrimination task with two targets
that corresponded to the motion directions (22). Motion direction
discrimination training continued until subjects achieved a high level

of performance as indicated by low psychophysical thresholds
(<17.0% for all subjects, pooled threshold = 13.1 ± 1.45%). This
training extended to the changing environment task. Subjects main-
tained a high level of direction discrimination accuracy and low
psychophysical thresholds for motion direction choices, irrespective of
the reported environment (pooled threshold = 13.3 ± 0.24%). Sim-
ilarly, all subjects exhibited improved motion choice accuracy for
higher motion strength (Fig. 2A and Fig. S1A; Eq. 1, β1 = 10.1 ± 0.26,
P < 10−10) and duration (Fig. S2A; Eq. 1, β2 = 0.4 ± 0.09, P = 3.8 ×
10−7), consistent with previous studies (22, 23). Thus, a subject’s
ability to perform the direction discrimination was not compromised
by the increased complexity of the changing environment task.
A crucial feature of the task design is that it explicitly dissociates

choices about motion direction (“direction choices,” left versus right
choice targets) and choices about the environment (“environment
choices,” upper versus lower choice targets). This dissociation en-
abled us to directly measure when subjects switched environments
and to assess the factors that shaped subjects’ decisions. Below, we
report experimental results that elucidate those factors. Then, we
explore the underlying computational mechanisms and provide a
model that offers a quantitative explanation for the motion direction
and environment choices based on within-trial accumulation of
sensory evidence and across-trial integration of expected accuracy
and feedback.

Environment Choices Were Shaped by Integration of Feedback and
Uncertainty About Motion Direction Across Trials. Subjects rarely
switched environments following positive feedback [PðswitchÞ =
0.005; Fig. 2B and Fig. S1B], indicating that they understood
the relative stability of the environments. In contrast, subjects
switched environments frequently following negative feedback
[PðswitchÞ = 0.39], and more so when negative feedback was given
on trials with higher motion strength (Fig. 2B and Fig. S1B; Eq. 2,
β1 = 6.2 ± 0.23, P < 10−10) and duration (Fig. S2B; Eq. 2, β2 =
0.3 ± 0.15, P = 0.03), that is, the trials in which they were more
likely to have accurate direction responses (Fig. 2A and Figs. S1A
and S2A). Indeed, feedback and expected direction choice accu-
racy seemed to be the critical factors in determining whether
subjects switched. The probability of switching environments after
negative feedback increased monotonically with subjects’ accuracy
(Fig. S3), and different combinations of motion strength and du-
ration that produced the same expected accuracy also produced a
similar probability of switching. In fact, the expected accuracy on a
trial with negative feedback explained 90.7% of the variance in
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Fig. 1. Changing environment task. (A) Task design. The pairs of targets
above and below the FP represented two environments. The right and left
targets in each environment represented the two possible directions of mo-
tion. Subjects received positive feedback for choosing the target that corre-
sponded to both the correct environment and correct motion direction. The
motion direction, motion strength (percentage of coherently moving dots,
%Coh), and duration varied randomly from trial to trial. The rewarding en-
vironment stayed fixed for a variable number of trials (2−15, truncated geo-
metric distribution) and then changed without explicit cue. Subjects had to
discover the correct environment based on the history of feedback, choice, and
choice certainty. (B) Example sequence of trials from one experimental session.
On each trial, the subject chose a target in the upper (EU) or lower (EL) envi-
ronment (circles). They received positive feedback (filled circles) if the chosen
target matched both the correct environment (black line) and motion di-
rection, and negative feedback (open circles) if either was incorrect.
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Fig. 2. The motion stimulus of the current trial informed direction choices, and
feedback and expected accuracy of previous trials informed environment
choices. (A) Motion direction discrimination accuracy increased with motion
strength. Data points show the accuracy of direction choices disregarding envi-
ronment choices. (B) The proportion of environment switches increased follow-
ing negative feedback on trials with stronger motion (colored points) and was
consistently low following positive feedback (black points). The circles in both
panels are data, and the lines show model fits. Data and model fits in both
panels are pooled across subjects (see Fig. S1 for individual subjects, and see
Table S1 for parameter values). Error bars are SE.
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switch probabilities on the next trial (Eq. 9, R2 = 0.907), whereas
additional knowledge about the motion strength and duration
explained only an additional 1% (Eq. 10, R2 = 0.917). Thus, sub-
jects’ environment switches seemed to be primarily informed by the
feedback and expected direction choice accuracy.
The effect of feedback and motion strength on future environment

switches extended for multiple trials. Because of subjects’ uncertainty
about the correct motion direction, they did not always switch envi-
ronment choices immediately after one negative feedback. When the
environment changed, subjects frequently continued to choose the
previous (incorrect) environment for two to four trials (43.9% of all
environment changes). However, subjects were also more likely to
switch as the number of consecutive negative feedbacks mounted
(Fig. 3A and Fig. S4A; Eq. 3, β3 = 1.5 ± 0.06, P < 10−10), suggesting
that the effect of negative feedback lasted for multiple trials (13, 24).
Importantly, this persistence was also dependent on motion strength,
ruling out the possibility that subjects simply counted the number of
errors to decide when to switch. The presence of a trial with low
motion strength in the sequence of negative feedbacks reduced the
likelihood of switching both on the next trial (Fig. 3B and Fig. S4B;
Eq. 3, β1 = 5.9 ± 0.26, P < 10−10) and on the subsequent ones (Fig.
3C and Fig. S4C; Eq. 5, P < 10−6 for β1−3). Conversely, negative
feedback on trials with higher motion strength was more likely to
trigger a switch in subjects’ environment choice and terminate the
sequence of consecutive errors (Fig. 3C and Fig. S4C). The de-
cision to switch environment choices, therefore, depended on in-
tegration of feedback and expected direction choice accuracy across
multiple trials.
For a more formal test of the properties of the multitrial in-

tegration process, we focused on sequences of two consecutive errors
in the same environment, because they were the most frequent type
of consecutive errors (80.6%). We asked how the motion strength on
those trials influenced subjects’ decisions to switch or persist on the
subsequent trial. We found that the probability of switching was
significantly influenced by the motion strength of both the first (Eq.
6, β2 = 1.9 ± 0.76, P = 0.01) and second (β1 = 4.9 ± 0.58, P < 10−10)
negative feedback. In addition, we found that the motion strength of
the more recent negative feedback exerted a stronger influence on
the probability of switching (Eq. 7, β2 = −1.8 ± 0.37, P = 1.5 × 10−6).
The stronger influence of more recent trials could be indicative of
two possible mechanisms. Switch evidence may be leaky (22, 25, 26),
in which case newer information more strongly influences the de-
cision to switch or stay. Alternatively, subjects could be switching
environment choices after accumulated evidence reaches a bound, in

which case the latest samples of evidence are more likely to exceed
the bound, if bound crossing has not occurred thus far. We will
evaluate these possibilities in the following sections.

An Uncertainty Accumulation Model Explained Motion Direction and
Environment Choices. We developed a computational framework to
understand how expected direction choice accuracy and feedback
support adaptive changes in the environment choice (Fig. 4). The
model is based on the following three key principles: (i) Direction
choices result from the accumulation of sensory evidence within
trials (10, 22, 26, 27), (ii) subjects compute expected accuracy of their
direction choices (3–11), and (iii) environment choices (to switch or
not) result from the integration of expected direction choice accu-
racy and feedback across trials (14–17, 20, 21). Thus, the model
provides a unified framework to explain perceptual decisions, the
confidence associated with those decisions, and the mechanisms by
which confidence supports adaptive behavior.
We modeled subjects’ direction choices using a bounded accu-

mulation model. Integration of sensory evidence toward a decision
bound (Fig. 4A) (22) accurately explains choices, response times,
confidence, and several other aspects of decision-making, including
speed−accuracy tradeoff, across a broad range of perceptual tasks (3,
4, 22, 27–32). In addition, neurophysiological recordings from pari-
etal cortex, frontal cortex, basal ganglia, and superior colliculus of
animals engaged in basic motion direction discrimination tasks ex-
hibit dynamics consistent with integration of evidence over time to a
bound (26, 30–35). We used a simplified variant of the bounded
accumulation model known as the drift−diffusion model to account
for direction choices. In this model, noisy sensory evidence is in-
tegrated over time in a domain bounded by two absorbing decision
thresholds that represent the two choices. The direction choice is
determined when the accumulated sensory evidence (the “sensory
decision variable”) reaches one of the two thresholds. If a threshold
is not reached by the end of the motion stimulus, then the sign of the
sensory decision variable dictates the choice (22, 36, 37).
The same bounded accumulation model can also explain the

confidence associated with direction choices (3, 4, 38, 39). The
crucial point is that both the magnitude of accumulated evidence
and elapsed time provide information about the probability of being
correct. To illustrate this mapping, Fig. 4B shows the probability
distribution of accumulated sensory evidence at each possible de-
cision time for a rightward stimulus with a particular motion strength
(6.4% coherence). By applying the decision rule described above, we
can compute the probability that the decision variable at a particular
magnitude and time would result in a correct response given the full
set of stimuli experienced by the subject (Fig. 4C). By learning this
mapping through experience, subjects could estimate their expected
direction choice accuracy based directly on accumulated sensory
evidence and elapsed time.
This expected direction choice accuracy can guide environment

choices. From a normative perspective, each instance of negative
feedback provides some evidence that the current environment
has changed (“switch evidence,” SI Text). The cause of negative
feedback is ambiguous, and the magnitude of switch evidence for a
single negative feedback is a function of the expected direction
choice accuracy for that trial (Fig. 4D). Subjects would maximize
the accuracy of environment choices by switching when the pos-
terior probability of a new environment exceeds that of the current
environment given the history of feedback, expected direction
choice accuracy, and belief about the probability of an environ-
ment change given that one has not yet occurred (i.e., subjective
hazard rate). Such a Bayes optimal solution can be formulated as
an accumulation of switch evidence over trials to a bound (SI
Text). The optimal switch evidence is in units of log-likelihood
ratio of a negative feedback under the two environments (Fig.
4D): log½pðF−jEn,C, τÞ=pðF−jEo,C, τÞ�= log½1=ð1− ÂÞ� (Eq. S6),
where Â is the expected direction choice accuracy derived from
the sensory decision variable and elapsed time, F− is negative
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feedback, En and Eo are the new and current (old) environments,
respectively, and C and τ are motion strength and duration, re-
spectively. In other words, just as integration of sensory evidence,
in units of log-likelihood ratio of sensory signals, is the optimal
computation for two-alternative perceptual choices (28, 40–42),
integration of switch evidence over multiple trials of negative
feedback to construct a “switch decision variable” is the optimal
computation for environment choices.
We hypothesized that subjects approximate the normative com-

putation to decide when to switch environment choices (Materials
and Methods). We tested this hypothesis by fitting subjects’ direction
and environment choices simultaneously with a model based on the
principles outlined above: integration of sensory evidence within a
trial to explain direction choices, computation of direction choice
confidence, and, finally, integration of confidence and feedback
across trials to a dynamic bound (Fig. 4E). The model used only five
free parameters (Table S1 andMaterials and Methods), and, despite

its low degrees of freedom, it provided a quantitative explanation
for all key aspects of subjects’ direction and environment choices
(Figs. 2, 3, and 5 and Figs. S1, S2, and S4, lines), including (i)
changes of direction choice accuracy with motion strength and
duration; (ii) increased likelihood of switching with negative feed-
back for stronger and longer motion stimuli; and (iii) the long-term,
multitrial influence of feedback and motion strength through in-
tegration of switch evidence over trials. Altogether, the close match
between the model and data strongly suggests that the model cap-
tures the computations that guided subjects’ behavior.

Accumulation of Switch Evidence Across Trials Is Not Leaky but It Resets
After Positive Feedback and Reflects Across-Trial Urgency. Subjects’
patterns of environment choices revealed key properties of the
switch evidence accumulation across trials. We highlight three of
these properties. First, subjects were likelier to switch environment
choices after negative feedback when they stayed in an environment
for more trials (Fig. 5 A and B; Eq. 8, β3 = 0.3 ± 0.01, P < 10−10).
This increased switch rate was not due to the increased chance of
consecutive errors for longer environment durations, because sim-
ilar results were obtained when we confined the analysis to se-
quences with only one error (Eq. 8, P < 10−10). Instead, it likely
reflects a growing urgency to switch environments. This growing
urgency to switch environment choices is akin to the urgency to
respond observed in perceptual decision-making tasks (29, 30), ex-
cept that it happens at much longer timescales (over trials, not
within single trials).
Our model provided further support for this urgency signal and

its necessity to explain behavior. The optimal form of the switch
bound, Be, should collapse over trials as a function of the subjective
hazard rate and the number of consecutive negative feedbacks (Eq.
S6). A lower switch bound promotes switches with less accumulated
evidence, increasing the likelihood of switches over trials. Our
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drives switches in environment choice. (Upper) The sequence of environ-
ments (lines) and subject’s choices (circles) resulting in positive (filled) or
negative (open) feedback. Color indicates motion strength. (Lower) Changes in
ve across trials. Subjects switch when ve exceeds the switch bound. For sim-
plicity, we illustrate a fixed Be (but see text for switch urgency).
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Fig. 5. Switch evidence reflects across-trial urgency and resets after positive
feedback. (A) The proportion of environment switches after negative feedback
increased as a function of the number of trials since the last correct switch. In all
panels, circles are data and lines are model fits. (B) The probability of switching
after negative feedback increased withmotion strength and the number of trials
in the current environment. (C) Mean switch bound resulting from the best-
fitting probability weighting functions (Inset) relating the experienced hazard
rate, H(T), to subjective hazard rate, Ĥ(T) (Materials and Methods). Color indi-
cates different subjects. (D) The probability of switching increased with consec-
utive errors, but dropped to almost 0 after just one positive feedback (trial 0).
Switch probabilities before the positive feedback were calculated for an in-
creasing number of consecutive errors within each sequence. Error bars are SE.
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model implemented this bound collapse based on two assumptions.
First, subjects could estimate the hazard rate of environment changes
based on the negative feedbacks they experienced in the task (Ma-
terials and Methods). Second, subjective hazard rates were related to
the experienced hazard rates based on a probability weighting func-
tion (43) (Eq. 16 and Fig. 5C, Inset) that slightly distorted subjective
probabilities, as reported previously (44). The best fitting probability
weighting function and the optimal switch bound based on the sub-
jective hazard functions are shown in Fig. 5C. For all subjects, the
quality of fit was consistently worse when this collapsing switch bound
was replaced with the best-fitting static bound for the data (likelihood
ratio test, P < 0.01 for all subjects). Therefore, the integration
mechanism that underlies environment switches seems to be sus-
ceptible to evidence-independent urgency signals that modulate the
termination criterion for the switch decisions. The dynamics of the
urgency signal could accommodate various statistics of environment
duration, for example, larger urgency for more short-lived environ-
ments, providing a basis for adaptive adjustment of behavior (Fig.
S5). We revisit this point in Discussion.
The optimal form of switch bound predicts that the urgency signal

can be divided into two components: one that depends on the sub-
jective hazard rate for an initial negative feedback and a second that
increases with subsequent negative feedbacks (Eq. S6). The pre-
ceding analyses establish the necessity of the first urgency
component to explain increased switching with time spent in an
environment. To test the necessity of the second form of urgency, we
added a weight, ω, on the magnitude of bound collapse with addi-
tional negative feedbacks and fitted the value as a free parameter
(Eq. 15). Three subjects collapsed their bound after subsequent
negative feedbacks as evidenced by a significant positive weight (S3:
ω= 1.8 ± 0.48, P = 5.3 × 10−5; S4: ω= 5.6 ± 1.68, P = 4.1 × 10−4; S5:
ω = 19.3 ± 6.07, P = 7.3 × 10−4). The remaining three subjects
showed negligible bound collapse after the initial negative
feedback (S1: ω = 0.05 ± 0.17, P = 0.38; S2: ω = 0.004 ± 0.007,
P = 0.30; S6: ω = 0.03 ± 0.17, P = 0.43). The short environment
durations in our experiment promoted switching after few con-
secutive negative feedbacks, and may have reduced the cost of
ignoring this urgency component.
Second, the data suggest a reset of accumulated switch evidence

(ve) to zero after positive feedbacks. Although repeated negative
feedbacks increased the subject’s likelihood of switching, a single
positive feedback immediately dropped the likelihood of switching
to almost zero regardless of the number of preceding errors and the
magnitude of accumulated switch evidence (Fig. 5D; Eq. 4, β1 =
0.5 ± 0.69, P = 0.49), indicating that the switch evidence ac-
cumulated before the positive feedback is entirely eliminated.
Further support for this conclusion comes from our model, where
we allowed the change of ve after positive feedback to be a free
parameter (q). This extended model provides the possibility that
positive feedback is treated merely as partial evidence against an
environment change. However, for all subjects (6/6), the model fits
indicated that the reduction of switch evidence after positive
feedback significantly exceeded the maximal switch bound (boot-
strap, P < 0.001 for all subjects), large enough to enforce a
complete reset in accumulated switch evidence. This reset is ap-
propriate for our task because the probability of a change is
always minimal immediately after a positive feedback.
Lastly, the integration of switch evidence is unsusceptible to

leakage—passive decay—across trials. A leaky integration hypoth-
esis has been suggested previously (45) and is widely assumed to
account for sequential learning phenomena in the reinforcement
learning literature. The long timescale for the integration of switch
evidence and potential biophysical limitations of integration circuits
make leaky integration a plausible hypothesis. Therefore, we ex-
tended the model to include a free parameter for the leakage of ve
(λ, Eq. 14). Like the model above, we also allowed the change of ve
following positive feedback to be a free parameter to ensure that
estimation of the leakage parameter is not disrupted by forced re-

sets of accumulated switch evidence. The model did not support the
leaky integration hypothesis. For all but one subject (5/6), the value
of leakage was indistinguishable from zero (S1: λ = 0.0880 ±
0.2148, P = 0.34; S2: λ= 0.0698 ± 0.1462, P = 0.32; S3: λ= 0.0095 ±
0.0114, P = 0.20; S4: λ = 0.0010 ± 0.0035, P = 0.39; S5: λ =
0.0000 ± 0.0005, P = 0.50; S6: λ= 0.1582 ± 0.0253, P = 1.9 × 10−10),
indicating that leakage of switch evidence after negative feedback is
not necessary to explain subjects’ behavior. Further, eliminating
switch noise from the model produced significantly worse fits for
all subjects, even when leakage was included (likelihood ratio test,
all P < 10−10), indicating that leakage is not a replacement for switch
noise. Finally, compatible with the previous models, the ve change
after positive feedback was greater than the maximum switch bound
for all subjects (bootstrap, all P < 0.001), indicating complete evi-
dence resets even when leaky integration was allowed in the model.
Altogether, these results confirm that adaptive decision-making

in the dynamic environment of our task depended both on a
growing urgency to switch environment choices over trials and on
perfect resetting of accumulated evidence following a single positive
feedback. In contrast, leakage of switch evidence across trials was
minimal and did not play a major role in shaping behavior.

Discussion
Our task is a simplified instance of the hierarchical decisions com-
monly made in complex environments. To obtain one’s goals, one
must adopt an appropriate decision strategy and also make wise
choices using that strategy. Failing to detect changes in the environ-
ment or adopt the right strategy for a new environment is a major
source of error in natural settings. Identifying such errors is often
nontrivial, because changes in the environment are rarely cued.
Rather, decision makers must infer the changes, often from feedback
for their own past choices. Inferring the changes creates a hierarchical
multiscale decision-making process in which outcomes of lower-level
choices inform revisions of decision strategy at higher levels. Our
task makes such hierarchical decision processes accessible in a
well-controlled experimental setting. By doing so, it enables us to
study neural mechanisms that underlie (i) resolution of ambiguous
feedback (e.g., perceptual or environment errors), (ii) interactions
of lower- and higher-level decision processes, (iii) simultaneous
integration of evidence over multiple timescales, and (iv) com-
mitment to a new decision strategy.
Detailed analysis of subjects’ behavior demonstrated that expected

accuracy in our perceptual choices resolves ambiguity about
negative feedback by providing evidence that the environment has
changed (switch evidence). Each negative feedback represents a
sample of switch evidence that is weighted by expected accuracy.
Negative feedback conferred stronger evidence for a switch when
expected accuracy was high, and less evidence for a switch when
expected accuracy was low. We found that the optimal solution to
the task was to accumulate switch evidence over multiple trials (in
units of log-likelihood ratio) and commit to a new environment
when the accumulated switch evidence reached a bound that col-
lapses dynamically over trials (40, 41). A computational framework
based on these principles quantitatively explained all aspects of
the behavior, providing a plausible mechanism for hierarchical,
multiscale decision-making.
The observation that expected accuracy of the perceptual choice

contributes to computation of switch evidence sheds light on why
confidence is so prevalently computed and accompanies our choices.
In a hierarchical decision process, a choice is not merely a com-
mitment at a particular point in time; it is also part of a sequence
that feeds into a higher level of the decision hierarchy for choices
about strategy. Confidence is the subjective belief, before feedback,
that a decision is correct (4, 27, 46–48). The match between this
subjective expectation and the actual feedback can be used for
learning about the environment (48) by serving as input for decisions
about updating the current strategy. Several other functions have
been attributed to the computation of confidence, including optimal
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cue combination (49), arbitration among multiple systems that
compete for a behavioral choice (50), and guidance of sequential
decisions when immediate feedback is unavailable (3). We suggest
that confidence is also the critical link that connects different levels
of the decision hierarchy. Automatic computation of confidence,
even in experimental settings that do not demand it (14, 51, 52),
suggests that decision hierarchies are an indispensible and ingrained
component of our behavioral repertoire.
In our model, subjective expected accuracy was derived directly

from accumulated sensory evidence and elapsed time. This frame-
work can explain choices, reaction times, and certainty judgments
during motion discrimination tasks (4), and it predicts the dynamics
of parietal neurons (3). However, it is likely that alternative models
of confidence based on the state of the perceptual decision-making
process would also be successful in our framework (6–11), so long as
they explain the variation of confidence with motion strength and
duration. The key point is that the perceptual decision process
drives computation of choice confidence that, in turn, drives deci-
sions about strategy, establishing a mechanistic link across levels of
the decision-making hierarchy.
This mechanistic link stems from the utility of confidence for

disentangling two potential sources of error—flawed strategy or poor
information. We directly tested the role of confidence in a follow-up
study in which subjects reported confidence in their motion direction
choice during the changing environment task (Materials and Methods
and SI Text). In this experiment, a single saccadic eye movement
simultaneously indicated the environment and motion direction
choices together with the confidence associated with the direction
choice (Fig. S6A) (4). As predicted by our model and results of the
main task, subjects were more likely to switch environments fol-
lowing trials in which a choice associated with higher confidence
produced negative feedback (Fig. S6B). Importantly, the effect of
confidence on switch behavior was not explained away by physical
characteristics of the motion stimulus (coherence and duration; Fig.
S6C), demonstrating that subjective confidence, and not objective
stimulus strength, are key to interpreting negative feedback.
More elaborate versions of our follow-up study with direct

measurements of both the motion direction and environment con-
fidence have the potential to shed light on another aspect of the
model. To explain subjects’ behavior, our model requires a term for
switch noise. This noise reflects two quantities that we cannot
separate in the current experiment: (i) fluctuations in subjective
expected accuracy and (ii) potential noise in integration of switch
evidence. Direct measurement of confidence will remove the first
source of variability, enabling us to better characterize integration
of switch evidence across trials. Recall that, due to the absence
of direct confidence measurements, we had to use an estimate
of expected accuracy generated by marginalization over different
decision times and sensory decision variables compatible with the
subject’s direction choice on each trial (Materials and Methods). We
suspect that a substantial part of switch noise is due to the differ-
ence between subjective expected accuracy and the marginalized
values we plugged into the model. Therefore, we predict that, by
removing this measurement noise, future work will demonstrate
more accurate across-trial integration than shown here and will
provide even better quantitative fits for the switch behavior.
The breadth of our framework allows it to connect with a broad

number of existing models for perception, learning and decision-
making, but, also, several critical aspects of our study distinguish it
from previous studies. We briefly mention three commonly used
classes of model in this paragraph. Model-free reinforcement
learning can use choice certainty to improve perception and cate-
gorization in a stable environment (53–55). These powerful models,
however, say little about how subjects decide that the environment
statistics have changed. Our framework also connects with a broad
class of hierarchical control models (2, 56), but many of those
models lack the clear bridge between perceptual decision-making
and decisions about changes in strategy that our model provides. The

hierarchical control models thus far have focused on a different, but
equally important, aspect of guiding behavior: how task complexity
can be reduced by grouping sequences of actions related to a com-
mon goal (i.e., temporal abstraction) (2). Combining temporal ab-
straction with our framework for adaptive hierarchical decisions will
be a fruitful endeavor. The third class of models that should be
mentioned here is the predictive coding framework, which is also
hierarchical in structure (57). These models have recently been ex-
tended to perceptual decision tasks (58) by assuming that the pre-
cision or reliability of sensory encoding influences the weighting of
sensory evidence for decisions. However, the predictive coding
framework has not yet been extended to decisions about when to
revise a strategy. Unlike standard predictive coding, a prediction
generated at a higher level in our framework is not used to explain
away lower-level representations, but is used to guide the lower-level
decisions. Our framework goes beyond existing models by explaining
how adaptive behavior in dynamic environments depends on a
specific form of interactions between lower- and higher-level deci-
sion processes. Our model quantitatively explains details of behavior
with remarkable accuracy, connects to the normative solution to the
task, and is built upon neurally plausible mechanisms that can be
directly tested through neurophysiological experiments.
By accumulating switch evidence to a bound, our model estab-

lishes a simple termination rule by which an evolving belief about
the environment can be translated into a concrete decision strategy.
This approach also distinguishes our framework from a broad
family of learning models based on delta update rules (13–15, 18,
45, 59). These models explain learning through sequential updates
in a probabilistic belief about the current environment. In real-
world environments, however, it is often necessary to explicitly
commit to a strategy to effectively guide future choices (12, 13, 16,
60), for example, when alternative strategies are incompatible.
Bounded accumulation of switch evidence offers a powerful method
to select among alternative hypotheses about the true state of the
world before committing to a strategy. This approach quantitatively
captured subjects’ switching behavior in our task, and similar
mechanisms have been shown to explain switching behavior when
environment statistics change along a continuum (16).
The success of this approach suggests that the brain uses the

same bounded accumulation mechanism over different timescales
to carry out both perceptual decisions and higher-level decisions
about strategy (59). Neural mechanisms of accumulation of sensory
evidence for perceptual choices are relatively well understood (36),
but far less is known about the neural mechanisms underlying in-
tegration of switch evidence over multiple trials. Neural responses in
parietal and prefrontal cortexes are influenced by past rewards (24)
and modulate their responses when subjects shift their decision
strategy (13, 59, 60). Neural responses in the medial prefrontal
cortex also exhibit peri-saccadic bursts that reach a fixed firing rate
peak immediately before switches in a dynamic foraging task (24),
suggestive of a mechanism similar to a switch bound. Human im-
aging data also support the role of prefrontal and parietal cortexes
in updating belief about a changing environment (12, 17). Our task
provides a framework to study whether and how these areas could
support long-term integration of switch evidence, perhaps via in-
teractions with identified neural representations of perceptual
confidence (3, 5, 6).
Our model also revealed several fundamental properties of the

higher-level decision process. Leakage or gradual loss of accumulated
switch evidence was negligible for the timescales tested in this ex-
periment and unnecessary to explain environment switches. We
cannot rule out more complex scenarios that involve leak rates that
vary with task parameters. Variable leakage can be advantageous in
some scenarios (25, 37, 61), but perfect integration over consecutive
negative feedbacks is optimal for this task (SI Text). Also predicted by
the normative solution, we found that accumulated switch evidence
resets after positive feedback, consistent with abrupt behavioral and
neural changes observed in other learning tasks (19, 60). Further,
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subjects showed a higher propensity to switch the longer they stayed
in an environment, indicating a gradual drop in their switch bound
(i.e., urgency), most likely due to a growing subjective hazard rate or
the prior odds that the environment has changed (16, 21). The
optimal form of switch bound incorporates this growing subjective
hazard rate and provided an excellent account of behavior, sug-
gesting a normative basis for this growing urgency signal. Changes
of urgency can augment the behavioral flexibility achieved by the
static shifts of the switch bound. These static and dynamic changes
of switch bound enable adjustment of switch rate based on the
volatility of the environment, which can be learned through expe-
rience (14, 16, 61). Indeed, increasing the average duration of the
environment in our experiment reduced the switch rate largely by
increasing the switch bound—subjects accumulated more evidence
before a switch (Fig. S5).
To summarize, we showed how expected accuracy in percep-

tual choices disambiguates negative feedback and bridges levels
of the decision-making hierarchy by furnishing evidence for
changes of strategy. Both perceptual and higher-level decision
processes use similar bounded accumulation mechanisms that
operate concurrently at different timescales. We showed how
this framework uses neurally plausible mechanisms to implement
the optimal solution to the task. Our task is simple enough to be
performed by nonhuman primates, laying the groundwork for
critical experiments to determine the neural implementation of
these mechanisms.

Materials and Methods
Six human subjects (five male and one female) participated in the main ex-
periment. Observers had normal or corrected-to-normal vision. All subjects
were naïve to the purpose of the experiment and provided informed written
consent before participation. All procedures were approved by the Institu-
tional Review Board at New York University.

Behavioral Tasks.Here, we summarize the behavioral tasks; details are provided
in SI Text. Subjects were first trained to perform a direction discrimination task.
Subjects initiated a trial by shifting gaze to a central fixation point (FP). After a
short delay, two targets appeared on opposite sides of the screen, followed by
a random dot motion stimulus. The subjects’ task was to determine the net
direction of motion (left or right). The percentage of coherently moving dots
(motion strength) and the duration of stimulus presentation varied from trial
to trial and determined the difficulty of the motion direction discrimination.
After a second short delay, FP turned off, signaling subjects to report the
perceived direction of motion by shifting gaze to the left or right choice tar-
get. Distinct auditory tones delivered positive or negative feedback if the
choice was correct or wrong.

Subjects were introduced to the changing environment task (Fig. 1A)
following motion direction discrimination training. The experimental setup,
motion stimulus, and timing of events were unchanged from training.
However, instead of one pair of choice targets, subjects were presented with
two pairs of choice targets, one pair above and one pair below the FP (four
total), corresponding to the two environments. The right and left targets in
each environment represented the two possible motion directions. Subjects
received positive feedback for choosing the target that corresponded to
both the correct environment and the correct motion direction. We refer to
the choice of left versus right targets as the “direction choice” and the
choice of upper versus lower targets as the “environment choice.” The active
environment stayed fixed for a variable number of trials (for the main ex-
periment, 2–15 trials, mean = 6, truncated geometric distribution) and then
changed without explicit cue (Fig. 1B).

We conducted two follow-up experiments that further tested the mecha-
nisms underlying revisions of decision strategy. In the first experiment, the
active environment persisted longer (3−20 trials, mean = 10) to test the
influence of changes in environment stability on behavior. In the second fol-
low-up experiment, subjects simultaneously reported their direction choice
confidence along with their direction and environment choices using a single
saccadic eye movement to an elongated bar (4). See SI Text for details.

Behavioral Analyses.We assessed the effects of motion strength and duration
on direction choices independent of environment choices using the following
logistic regression:

Logit ½PT ðcorrect   dirÞ�= β1CT + β2τT , [1]

where LogitðpÞ= log
� p
1−p

�
, and PT ðcorrect   dirÞ is the probability of a correct

motion direction choice on trial T. CT and τT are the motion strength and
duration on the same trial, respectively. The βi are regression coefficients. β1
tests for a main effect of motion strength on the proportion of correct
motion direction choices, β2 tests for a main effect of stimulus duration.
Regression coefficients in Eq. 1 and all subsequent logistic regressions were
calculated using maximum likelihood fitting and are summarized in Table
S2. In Eq. 1 and other logistic regressions in this paper, the probabilities on
the left-hand side of the equations are conditional on the factors listed on
the right-hand side. For simplicity and to keep the equations short, we do
not list these factors in the conditional probabilities.

To quantify the effect of the last trial on the decision to switch envi-
ronment choices, we used the following logistic regression:

Logit
�
PT ,FðswitchÞ�= β0 +   β1CT−1 + β2τT−1, [2]

where PT ,FðswitchÞ is the probability that the environment choice on trial T
does not match the environment choice on trial T − 1 (i.e., the subject
switched environment choices) given positive (F+) or negative (F−) feedback
on trial T − 1. CT−1 and τT−1 indicate the motion strength and duration on
the previous trial, T − 1. This regression was performed separately for trials
in which feedback was positive or negative on trial T − 1.

We tested for the effect of consecutive negative feedbacks on environ-
ment choices using the following equation:

Logit
�
PT ,F− ðswitchÞ�= β0 + β1CT−1 + β2τT−1 + β3N, [3]

where N indicates the number of consecutive negative feedbacks that pre-
ceded trial T . The null hypothesis is that subjects did not take feedback
history into account beyond the last trial and that their decisions to switch
environment choices were mainly influenced by the last trial (H0 : β3 = 0).

We tested whether the history of negative feedback was negated by a
single positive feedback using the following equation:

Logit
�
PT ,F+ ðswitchÞ�= β0 + β1K, [4]

where K indicates the number of consecutive negative feedbacks followed
by a single positive feedback before trial T. β1 tests whether the influence of
repeated negative feedbacks remains following a single positive feedback.

We used several additional analyses to investigate the effects of consecutive
errors on environment choices. First, we evaluated how motion strength on the
trial in which the environment changed (and the subject received negative
feedback) influenced the accuracy of future environment choices. The following
logistic regression was used:

Logit½PT+iðcorrect   envÞ�= β0 +
X4
j=1

βjCT δij , [5]

where PT+iðcorrect   envÞ indicates the probability of choosing the correct
environment i trials after the environment change on trial T. Here δij is a
Dirac delta function, which is 1 when i equals j and 0 otherwise. Up to four
trials after the environment change are considered for this analysis. Subjects
almost always received negative feedback on trial T because they were
unaware of the environment change and chose the previous environment.
Each βj tests the hypothesis that the motion strength of the change trial
influences environment accuracy j trials into the future.

Second, we analyzed sequences of two consecutive errors to test how the
motion strength for each error trial influenced the subsequent environment
choice. We used the following regression equation:

Logit
�
PT ,F− ðswitchÞ�= β0 + β1CT−1 + β2CT−2 + β3CT−1CT−2, [6]

where CT−2 and CT−1 are the motion strengths of the first and second trials in
the sequence, respectively. The β1 coefficient tests for a main effect of
motion strength on the decision to switch environment choices on the next
trial, the β2 coefficient tests for a main effect of motion strength two trials in
the future, and the β3 coefficient tests for an interaction of the two pre-
ceding trials. We focused on sequences of two errors, because of their
abundance in the dataset. Similar trends were obtained for longer error
sequences.

Third, we used the following equation to test whether the influence of
consecutive errors on the decision to switch environment choices depended
on the ordering of the trials:
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Logit
�
PT ,F− ðswitchÞ�= β0 + β1ðCT−2 +CT−1Þ+ β2ðCT−2 −CT−1Þ. [7]

The null hypothesis is no effect of ordering (H0 :   β2 = 0). If β2 > 0, then the
probability of switching is greater when the motion strength for the first
error (trial T − 2) is greater than the motion strength for the second error
(trial T − 1). The opposite is true if β2 < 0. We obtained identical results when
we instead defined a set of contrasts for CT−2 and CT−1 in Eq. 6, but we report
coefficients from Eq. 7, for simplicity.

Finally, we used the following regression to assess whether subjects’ de-
cisions to switch environment choices were influenced by the number of
trials spent in the current environment:

Logit
�
PT ,F− ðswitchÞ�=   β0 + β1CT−1 + β2τT−1 + β3LT−1, [8]

where LT−1 is the number of trials since the subject switched into the
new environment. In the actual task design, the environment duration was
sampled from a truncated geometric distribution with a relatively flat hazard
rate between trials 3 and 10 and an increasing hazard rate closer to the point
of truncation. Subjects could inform their switching behavior by learning the
statistics of environment duration [either the hazard rate or the prior odds (16)
that the environment has changed since the last switch] through experience. The
null hypothesis is that subjects were not influenced by the number of trials in the
current environment (H0 : β3 = 0). We obtained identical results when we confined
the analysis to the trials preceded by only a single error (T − 2 was correct),
indicating that the increased tendency to switch with the experienced duration
of the current environment is not explained by the increased likelihood of multiple
preceding errors.

We sought further support for the role of expected accuracy in determining
environment switches by computing the variance explained (R2) for two nested
logistic regressions. The first regression predicted switching after negative
feedback based only on the expected accuracy of the preceding trial,

Logit
�
PT ,F− ðswitchÞ�= β0 + β1 log

�
1

1−AT−1

�
. [9]

The second regression included additional terms for both motion strength
and duration,

Logit
�
PT ,F− ðswitchÞ�= β0 + β1 log

�
1

1−AT−1

�
+ β2CT−1 + β3τT−1. [10]

Only trials following negative feedback (F−) were included in this analysis.
Variance explained was computed based on a comparison of model fits to
observed probability of switches for different motion strengths and dura-
tions. If expected accuracy is the primary factor in explaining switching be-
havior, then it should explain the majority of variance in the probability of
switching without the inclusion of the motion strength and duration terms
(i.e., the variance explained by the second regression should not greatly
exceed the variance explained by the first).

Uncertainty Accumulation Model. Perceptual and environment choices in our
task can be explained through three core mechanisms. Direction choices are
produced by integrating momentary sensory evidence within trials (22, 26,
27, 34). Direction choice confidence (expected accuracy) is derived from ac-
cumulated sensory evidence and elapsed time (3, 4). Environment choices
are guided by integrating feedback and expected accuracy across trials (14,
16, 17, 21). We developed a model that combines these core mechanisms to
simultaneously explain subjects’ direction and environment choices across a
session. We further show how this framework implements the Bayes optimal
computation to maximize environment choice accuracy given the experi-
enced trial sequence. Below, we outline the details of this model.

Direction choices are produced by accumulating noisy sensory evidence to a
threshold (decision bound) (36). A simplified version of this process can be for-
mulated by a drift−diffusion model, which has been shown to successfully ex-
plain choice, reaction time, and confidence judgments for a broad range of
cognitive and perceptual decision-making tasks, including motion direction dis-
crimination (4, 22, 27–30). According to this model, the decision terminates when
accumulated sensory evidence reaches a positive or negative bound or when the
incoming sensory evidence stops (i.e., the motion stimulus ceases). The choice is
determined by the bound that is reached (upper or lower) or, if a bound is not
reached, by the sign of the accumulated sensory evidence (positive or negative)
at the end of the stimulus duration.

The accumulated sensory evidence undergoes drift plus diffusion
according to the following stochastic differential equation (Fig. 4 A and B):

dvd =dtμd +
ffiffiffiffiffi
dt

p
ξd , vdð0Þ=   0, [11]

where vd is the state of the accumulated sensory evidence (i.e., the sensory
decision variable for motion direction) (36), t is time in milliseconds, μd is the
mean of momentary sensory evidence, and ξd is a Wiener process with unit
SD. The distribution of momentary sensory evidence is stationary over time,
and its mean is linearly related to the motion strength; μd = kC, where k is a
sensitivity parameter and C is motion strength (3); vd starts at zero on each
trial. A sensory decision bound parameter, Bd, defines positive and negative
absorbing bounds for the direction choices.

There is a unique mapping between the magnitude of accumulated evi-
dence, decision time, and the probability that the direction choice is correct
(3, 4). Given the set of motion strengths in the experiment, one can calculate
the expected direction choice accuracy, A, for all possible values of accu-
mulated sensory evidence and decision times (Fig. 4C),

A=   pðD1jvd , tdÞ=  

P
ip
�
vd , td jD1,Ci,

�
pðCiÞP

j

P
ip
�
vd , td jDj ,Ci

�
pðCiÞ

, [12]

where td is the decision time, vd is accumulated evidence at decision time,
and D1 and D2 are the correct and incorrect motion direction choices, re-
spectively. PðD1jvd , tdÞ is the probability that the chosen direction will turn
out to be correct for a particular sensory decision variable and time. Ci and
pðCiÞ are the set of motion strengths and their probabilities in the experi-
ment. The summation term on the right-hand numerator implements mar-
ginalization over motion strength, and the summation terms in the denominator
implement marginalization over motion strength and direction. As shown in
Fig. 4C, this equation implies that expected accuracy depends on both the
magnitude of accumulated sensory evidence (i.e., greater accumulated evidence
is associated with greater confidence) and also elapsed time (longer decision
times are associated with lower confidence), a relationship that has been ex-
perimentally verified (3, 4). By learning this mapping through experience, sub-
jects could gauge the expected accuracy of their direction choices in individual
trials based on their accumulated sensory evidence and decision time.

We estimated the expected direction choice accuracy on individual trials,
Â, by marginalizing over possible accumulated evidence and decision times
associated with each choice and stimulus,

Â= p̂ðD1jC,R, τÞ=  
1
ψ

Z Z 

pðD1jvd , tdÞpðvd , td , jC,R, τÞgðvd , td ,RÞdvddtd , [13]

where C is the motion strength, τ is the motion duration, R is the direction
choice, and ψ is the normalization factor; gðvd , td ,RÞ is an indicator function
that implements the decision rule explained above,

gðvd , td ,RÞ=
	
1 if  vd   and  td   terminate  the  process  and  lead  to  R,
0 otherwise.

The marginalization in Eq. 13 reflects the fact that, in this experiment,
subjects could have committed to a direction choice before the Go signal.
The expected probability of an erroneous direction choice would be

p̂ðD2jC,R, τÞ= 1− p̂ðD1jC,R, τÞ.

A key feature of the changing environment task design is that both feedback and
expected direction choice accuracy furnish evidence bearing on the decision to
switch or repeat the previous environment choice. Positive feedback always
minimizes the probability that the environment will change on the next trial.
Negative feedback, on the other hand, is always ambiguous, but expected ac-
curacy of the direction choice can resolve this ambiguity. Higher expected ac-
curacy translates to a larger probability that the environment has changed. That
offers a principle that subjects must take into account to optimize their envi-
ronment choices. Hereafter, we use the term “switch evidence” to refer to the
combined evidence that feedback and expected accuracy of direction choices
provide about the probability that the environment has changed.

A Bayesian decision maker would switch environment when the posterior
probability of a new environment exceeds the old one given the history of
feedback, expected direction choice accuracy, and trials spent in the old en-
vironment (SI Text). This Bayes optimal solution can be formulated as in-
tegration of switch evidence over trials, where switch evidence is defined as
the log-likelihood ratio of an error feedback for the new and old environ-
ments: log½1=ð1−AÞ� (Eq. S6), where A is the expected direction choice accu-
racy (Eq. 12). The intuition for the formulation of switch evidence is as follows.
The probability of negative feedback for staying in the old environment fol-
lowing an environment change is 1. However, if the old environment is still
effective, the probability of negative feedback for staying in the environment
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is 1−A. The log of the ratio of these two likelihoods constitutes evidence for a
change in the environment. Because we do not know the decision time on
each trial, we use the expected direction choice accuracy, Â (Eq. 13), as a
substitute for A. Subjects should switch environments when integrated switch
evidence exceeds a bound dictated by the hazard rate and the number of
consecutive negative feedbacks (Eq. S6). Overall, just as accumulating sensory
evidence to a bound is the optimal computation for making a decision based
on incoming sensory evidence (28, 40, 41), integrating switch evidence over
trials to a bound is the optimal solution to decide when to switch environment
in our task.

The optimal model replicates all of the major trends in subjects’ behavior (Fig.
S7). A quantitative fit to the data, however, requires knowledge about subjective
hazard rates and properties of the accumulation process. We developed a series
of plausible models to explore these properties. In our models, switch evidence is
integrated across trials according to the following nonstationary diffusion process:

dve =dT
�
μe,T − λve

�
+

ffiffiffiffiffiffiffi
dT

p
ξe, veð0Þ=   0, [14]

where, ve is the accumulated switch evidence (i.e., switch decision variable),
T is time in units of trials, μe,T is the switch evidence on trial T, ξe is a Wiener
process with SD σe (“switch noise”), and λ is a leakage term that discounts
past evidence. The leakage parameter controls the time constant of in-
tegration across trials and ranges from 0 (perfect integration) to 1 (no in-
tegration). The switch noise reflects fluctuations of subjective expected
accuracy and potential noise in the accumulation of switch evidence. Fol-
lowing negative feedback on trial T, μe is the switch evidence as explained
above. Following positive feedback, μe is a negative constant q. Thus, neg-
ative feedback increases switch evidence according to the expected accu-
racy, and positive feedback decreases it. The process is nonstationary
because μe depends on the specific sequence of feedbacks, motion strengths,
motion durations, and choices across trials. The model predicts that a switch
in the current environment choice is initiated when a switch bound, Be, is
exceeded. Following the switch, ve is reset back to zero. The model also
assumes a lower reflecting bound at 0 that prevents ve from becoming
negative. The fact that the probability of another environment change can
only grow after a correct switch justifies such a lower bound. The exact lo-
cation of this reflecting lower bound is not critical for our conclusions, and so
we did not make it a free parameter in the model.

We explored alternative nested models that made different assumptions
about the presence or absence of leakage, noise, and the influence of positive
feedback on accumulated switch evidence. For our main model, we fixed
q=−∞ to impose a complete reset of switch evidence following positive
feedbacks. We also fixed λ= 0, assuming that integration of switch evidence
does not suffer from leakage. This formulation is consistent with the optimal
solution (Eq. S6), but we also evaluated several plausible alternatives. In a
second model, we relaxed the constraint on q and allowed it to be a free
parameter, to formally test whether a reset of accumulated switch evidence
is a warranted assumption. In a third model, we also allowed λ to be a free
parameter, to estimate the amount of leak in the integration process. The
results of these three models are explained in Results. In a fourth model, we
tested the necessity of switch noise by forcing it to zero and comparing the
fits with the main model. The results verified that switch noise was necessary
to explain behavior (likelihood ratio test, P < 10−10 for all subjects). Finally, in
a fifth model, we forced switch noise to zero and allowed λ and q to be free
parameters to assess whether leakage can compensate for switch noise. The
fits were generally inferior to our main model or the third model above
(likelihood ratio test with the third model, P < 10−10 for all subjects).

The switch bound, Be, is informed by the subjective hazard rate of en-
vironment changes and the consecutive negative feedbacks experienced
before the current trial (SI Text). Because environment durations were
sampled from a truncated geometric distribution, the true hazard rate
gradually increased as the number of trials in an environment approached
the truncation point. Subjects were not told about the distribution of en-
vironment duration but could develop a subjective estimate by experience.
The increasing hazard rate created an urgency to switch by collapsing Be

over trials. According to the Bayesian optimal solution, consecutive errors
would further accelerate this bound collapse. We tested the influence of
consecutive errors using a modified version of Eq. S6,

BeðTÞ=−log
�
ĤðT −nÞ�+ log

�
1− ĤðT −nÞ�+ω

X0
i=n−1

log
�
1− ĤðT − iÞ�, [15]

where BeðTÞ is the switch bound and ĤðTÞ is the subjective hazard rate on
trial T; n is the number of consecutive negative feedbacks preceding the
negative feedback on trial T (total number of consecutive errors in the sequence

is n+ 1). The first and second terms in Eq. 15 establish a positive baseline for the
first negative feedback that is modulated by the subsequent negative feedbacks
up to the current trial (third term in Eq. 15). Because ĤðTÞ is bounded between
zero and 1, log½1− ĤðT − iÞ� are negative and decrease the bound from the
baseline; ω is a weighting parameter that scales the magnitude of the bound
collapse due to subsequent negative feedbacks. In our main model, we fix ω to 1
to implement the optimal bound, but we also evaluated alternative models in
which ω was a free parameter to test whether modulation by subsequent
negative feedbacks is a necessary form of switch urgency (Results).

We estimated subjective hazard rates based on experienced environment
changes and well-known distortions in perception of objective probabilities.
First, we measured the experienced hazard rate, HðTÞ, for the trial sequences
in the task. To do so, we calculated the likelihood that the subject received a
negative feedback on trial i within an environment and subtracted a base-
line likelihood for negative feedback due to motion direction errors. These
experienced hazard rates were similar across subjects and matched expec-
tations based on the truncated geometric distribution of environment du-
rations. Second, we allowed for the possibility that subjective hazard rates,
ĤðTÞ, may deviate systematically from the experienced hazard rates, because
subjects tend to overweight lower probabilities and underweight higher
probabilities (44). To account for individual differences in subjective hazard
rates, we implemented a probability weighting function following (43)

ĤðTÞ=   B0 +

 
HðTÞγ

fHðTÞγ + ½1−HðTÞ�γg
1
=γ

!
ð1−B0Þ, [16]

where B0 and γ are free parameters that determine the mapping between
actual and subjective probabilities. Because the form of HðTÞ was derived
directly from the data and Eq. 15 directly relates ĤðTÞ to BeðTÞ, these are the
only free parameters needed to describe the switch bound. The form of the
optimal bound resulting from the best fitting probability weighting func-
tions are shown in Fig. 5C. To test the necessity of the bound collapse, we
also evaluated a model in which the bound was static over all trials using a
single parameter (Results).

Model Fitting. In total, our nested models have between two and seven free
parameters, depending on whether leakage (λ), negative switch evidence (q),
switch noise (σe), and switch bound parameters (ω, B0, and γ) are fixed or
free to change. Motion direction choices depend on the stimulus sensitivity,
k, and sensory decision bound, Bd. These parameters, along with q, de-
termine the mean switch evidence, μe, on each trial. In addition to μe, en-
vironment choices depend on a switch noise parameter, σe, leakage, λ, and
the switch bound parameters, B0, γ, and ω (Eqs. 15 and 16). The main model
in the paper has five free parameters (k, Bd, σe, B0, and γ; Table S1, Figs. 2, 3,
and 5, and Figs. S1, S2, S4, and S5).

For each model, the parameters were simultaneously fit to individual
subjects’ data by maximizing the joint likelihood of direction choices (correct
or error) and environment choices (switch or nonswitch) across trials. We
calculated the likelihood of each direction choice using numerical solutions
to the Fokker−Planck formulation of Eq. 11 (3). We calculated the likelihood
of each environment choice using Monte Carlo simulations (15,000 itera-
tions) to solve Eq. 14. The exact sequences of motion strengths, motion
durations, and choices experienced by the subjects were used for these cal-
culations. Further, to ensure that the model used a trial history that matched
the subject’s experience, we reset accumulated switch evidence to zero on
trials after subjects switched environments. The trial following a switch error
was excluded from fitting, because subjects were explicitly told when they
incorrectly switched environments (see Behavioral Tasks and SI Text).

We estimated the SE of best-fitting parameter values using a bootstrap
procedure. Typical bootstrapping involves randomly sampling individual trials,
but ourmodel predictions dependon trial history. Therefore,we instead sampled,
with replacement, consecutive runs of trials between environment switches. This
preserves the effective trial history, because evidence accumulation always resets
following the switches. The total number of runs sampled was equal to the total
number of runs in each data set. We repeated this process 100 times and
identified the parameters that maximized the likelihood of the sampled data in
each iteration. The SD of the resulting parameter distribution provided an esti-
mate of the SE of model parameters.
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SI Text
Motion Direction Discrimination Training. Throughout the experi-
ment, subjects were seated in an adjustable chair in a semidark
room with chin and forehead supported before a Cathode Ray
Tube (CRT) display monitor (20”, EIZO FlexScan T966; refresh
rate 75 Hz, screen resolution 1,600 × 1,200; viewing distance
53 cm). Stimulus presentation was controlled with Psychophysics
Toolbox (62) and Matlab. Eye movements were monitored using
a high-speed infrared camera (Eyelink; SR-Research). Gaze
positions were recorded at 1 kHz.
The trial started when the subject looked at a small red fixation

point (FP, 0.3° diameter circle) at the center of the screen. Following
a variable delay (200−500 ms; truncated exponential), two red targets
(0.5°) appeared on opposite sides of the screen equidistant from the
FP (8° eccentricity). Following another random delay (200−500 ms;
truncated exponential), a dynamic random dots stimulus appeared
within a 5° circular aperture centered on the FP. The dots were white
4 × 4 pixel squares (0.096° × 0.096°) on black background (dot
density, 16.7 dots per square degree per second). The stimulus con-
sisted of three independent sets of moving dots shown in consecutive
frames. Each set of dots was shown for one video frame and then
replotted three video frames later (Δt = 40 ms). When replotted, a
subset of dots were offset coherently from their original location to
create apparent motion (speed, 5° per second) while the remaining
dots were placed randomly within the aperture. Following the offset
of the motion stimulus, a delay period (400−1,000 ms; truncated
exponential) was imposed before the Go signal (FP offset). Subjects
were instructed to maintain gaze on the FP throughout the trial until
the Go signal. If the gaze deviated more than 2° from the FP, the trial
was aborted. Following the Go signal, subjects reported their per-
ceived direction of motion by shifting gaze to the choice target in the
direction of motion and maintaining the gaze within 3° of the target
for 200 ms. Subjects received distinct auditory feedback for correct
(positive feedback) and error (negative feedback) responses. Aborted
trials had a neutral, uninformative auditory feedback and were ex-
cluded from the analyses. Training on the basic motion discrimination
task continued until subjects achieved high performance as indicated
by psychophysical thresholds <17% (Results).
We manipulated the difficulty of the motion direction dis-

crimination in two ways. First, the motion stimulus duration on
each trial was randomly sampled from a truncated exponential
distribution (100−900 ms, mean = 330 ms). Second, the motion
strength varied randomly across trials. The motion strength was
determined by the percentage of coherently displaced dots: 0%,
3.2%, 6.4%, 12.8%, 25.6%, and 51.2%. On trials with 0% co-
herence, positive feedback was randomly delivered for half of the
trials, and negative feedback was delivered on the other half.
Training on the basic motion discrimination task continued until
subjects achieved high performance, as indicated by psycho-
physical thresholds of <17% (Results).

Changing Environment Task. Subjects were introduced to the
changing environment task (Fig. 1A) following motion direction
discrimination training. The experimental setup, motion stimu-
lus, and timing of events were unchanged from training. How-
ever, instead of one pair of choice targets, subjects were
presented with two pairs of choice targets (four targets total),
one pair above and one pair below the FP (10° eccentricity; ±3.5°
above/below FP; ±9.4° left/right of FP). The right and left targets
in each pair corresponded to the right and left motion directions,
respectively. We refer to the upper and lower pairs of choice targets
as two environments. On any given trial, only one environment was

correct. Subjects were instructed to choose the target that corre-
sponded to the correct motion direction and correct environment.
We refer to the choice of left versus right targets as the “direction
choice” and the choice of upper versus lower targets as the “envi-
ronment choice.” An environment remained stable for several trials
according to a truncated geometric distribution (range 2–15 trials,
mean 6) and then changed (Fig. 1B). Subjects were not explicitly cued
about the correct environment or when it changed—they had to
discover it. They received positive feedback only when both the en-
vironment and direction choice were correct. Negative feedback,
however, was ambiguous; it occurred when either the environment or
the direction choice were incorrect. Subjects had to resolve this am-
biguity based on feedback and their expected accuracy in past choices.
The auditory tones corresponding to positive and negative feedback
were identical to those used for direction discrimination training.
During training, subjects were told that their goal was to maximize the
proportion of correct trials and that, to do this, they should try to
identify environment changes as accurately and as soon as possible.
We adjusted the changing environment task design to simplify the

interpretation of experimental results. First, to eliminate mistakes due
to misremembering of the previously chosen environment, the targets
for the environment chosen in the last trial were slightly brighter. In
other words, choosing a brighter target always corresponded to staying
in the same environment, whereas choosing a dimmer target always
corresponded to an environment switch. This task design reduced the
burden on subjects’ working memory, helping them fully focus on the
decision about motion direction and environment on the current trial.
In a second modification, trials in which subjects incorrectly switched
environment (i.e., switch errors) were followed by presentation of the
text, “Switch error, Go back!” This prevented prolonged confusion
following incorrect switches and simplified the interpretation of re-
sults. Neither of these modifications was critical for our results—very
similar results were obtained in earlier versions of the task without
these modifications.
Each subject contributed several sessions of data across days. In

each session, subjects performed three or four blocks of 100–200 trials
(mean trials per subject = 2,958 trials; range= 2,359–3,485; total trials
across subjects = 17,749).
To test for an influence of environment statistics on subjects’

switching behavior, we conducted a follow-up experiment in which
five subjects performed the task with longer environments. The
training procedure, experimental setup, stimulus, instructions, and
timing of events within trials were identical to those described above.
The only difference was that we increased the mean and range of
environment durations experienced by the subjects (truncated geo-
metric distribution, range 3–20 trials, mean 10). This allowed us to
assess how subjects’ switching behavior changed with longer envi-
ronment durations and, most importantly, how these changes could
be explained by our modeling framework (Fig. S5).
To verify that subjects used confidence to disambiguate the

causes of negative feedback—flawed strategy or poor in-
formation—we conducted a follow-up experiment in which six
subjects reported their direction choice confidence on each trial
(Fig. S6). The task was identical to the main experiment, except
that targets were replaced by elongated bars (7° long, 0.75° wide)
and the environment duration distribution was matched to our
first follow-up experiment (truncated geometric distribution,
range 3–20, mean 10). The targets were placed at 7° eccentricity
and oriented 45° (upper left and lower right targets) or 135°
(upper right and lower left targets) to create a diamond pattern
around the FP (Fig. S6A). As before, subjects indicated their
environment choices by responding to the upper or lower targets
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and indicated their direction choices by responding to the left or right
targets. In addition, subjects indicated their degree of confidence that
their direction choice was correct by varying the landing point of their
saccade along the length of the chosen target (4). We report subjects’
confidence as the saccade end point in units of degrees along the
target in the direction of increasing confidence (min = −4.5°, max =
+4.5°, which includes the response window surrounding each target).
Each target was colored with a spectrum ranging from red at one end
(maximal certainty) to green at the other end (minimal certainty) in
10 discrete steps. Subjects were instructed that their confidence
ratings should reflect only direction choice confidence and not
environment choice confidence. To test whether motion direction
choice confidence predicted subjects’ environment choices in-
dependent of stimulus properties, we removed the trial-to-trial
variability of the motion stimulus for half of the trials by using a
fixed seed for the pseudorandom number generator (one per
coherence and direction) (3).

Supplemental Behavioral Analyses.Our follow-up experiment allowed
us to test whether subjects’ direction choice confidence predicted
environment choices independent of stimulus properties by analyzing
only the subset of trials in which trial-to-trial stimulus variability was
removed. For these trials, we computed saccade end point residuals
by subtracting the mean saccade end point for each motion strength
and duration quantile (20 quantiles; other numbers of quantiles
produced similar results). The resulting saccade end point residuals
were symmetrically distributed around zero. We obtained identical
results using a parametric approach in which we fit saccade end
points with a linear regression using motion strength, duration, and
their interaction as predictors and then computed residuals by sub-
tracting model predictions.

Optimal Solution for the Changing Environment Task. Switching from
an old environment (E= 1) to a new environment (E= 2) should
happen when the posterior odds of the new environment exceeds
1. The posterior odds are

PO=
p½EðTÞ= 2jCðT − n, ...,TÞ,FðT − n, ...,TÞ�
p½EðTÞ= 1jCðT − n, ...,TÞ,FðT − n, ...,TÞ�

=
p½EðTÞ= 2,CðT − n, ...,TÞ,FðT − n, ...,TÞ�
p½EðTÞ= 1,CðT − n, ...,TÞ,FðT − n, ...,TÞ�,

[S1]

where EðTÞ, CðTÞ, and FðTÞ are the environment, motion strength
(coherence and duration), and feedback on trial T, respectively.
We use C to refer to both the motion coherence and duration only
to shorten the equations—separating the two will not change the
final conclusion. The equality is based on Bayes’ rule. It can be
shown that the posterior odds ratio becomes 0 for positive feedback

on trial T. Therefore, we focus only on sequences of consecutive
negative feedbacks that result from staying in the old environment
from trial T − n to trial T(trial T − n is the first trial with negative
feedback in the sequence, and feedback on trial T − n− 1 is posi-
tive). The numerator and denominator on the second line of Eq. S1
can be calculated as follows. The denominator is

p½EðTÞ= 1,CðT − n, ...,TÞ,FðT − n, ...,TÞ�
= p½EðT − n, ...,TÞ= 1,CðT − n, ...,TÞ,FðT − n, ...,TÞ�
= p½FðT − n, ...,TÞjEðT − n, ...,TÞ= 1,CðT − n, ...,TÞ�
× p½EðT − n, ...,TÞ= 1� p½CðT − n, ...,TÞ�

= p½CðT − n, ...,TÞ� p½EðT − n, ...,TÞ= 1�

×
Y0
i=n

p½FðT − iÞjEðT − iÞ= 1,CðT − iÞ�

= p½CðT − n, ...,TÞ�
Y0
i=n

½1−HðT − iÞ�
Y0
i=n

½1−AðT − iÞ�, [S2]

where AðTÞ is the expected accuracy (confidence) for the direction
choice on trial T. The second line in Eq. S2 results from our task
design that ensures an environment change does not revert until the
subject switches and samples the new environment. Put in equations,

p½EðT − 1Þ= 1jEðTÞ= 1�= 1,

which can be rearranged using Bayes’ rule to show

p½EðT − 1Þ= 1,EðTÞ= 1�= p½EðTÞ= 1�.

A similar logic applies to trials before T − 1 in the sequence.
The numerator of posterior odds is

p½EðTÞ= 2,CðT − n, ...,TÞ,FðT −n, ...,TÞ�
=

X
s

p½EðTÞ= 2,EðT −n, ...,T − 1Þ= s,CðT − n, ...,TÞ,FðT − n, ...,TÞ�

= p½CðT −n, ...,TÞ�
X
s

fp½EðTÞ= 2,EðT −n, ...,T − 1Þ= s�

×
Y0
i=n

p½FðT − iÞjCðT − iÞ,EðT − iÞ�g

= p½CðT −n, ...,TÞ�fHðT − nÞ
+½1−HðT − nÞ�HðT − n+ 1Þ½1−AðT − nÞ�+ ...g,

[S3]

where s denotes plausible combinations of environments in the
previous n trials (e.g., a switch on trial T − n, T− n + 1, etc.).
Putting Eqs. S2 and S3 in Eq. S1, we have

PO=

2
666664

HðT − nÞ þHðT − nþ 1Þ½1−HðT − nÞ�½1−AðT − nÞ�þ
HðT − nþ 2Þ½1−HðT − nÞ�½1−HðT − nþ 1Þ�½1−AðT − nÞ�½1−AðT − nþ 1Þ�þ

. . .þHðTÞ
Y1
i=n

f½1−HðT − iÞ�½1−AðT − iÞ�g

3
777775

Y0
i=n

½1−HðT − iÞ�
Y0
i=n

½1−AðT − iÞ�

≈
HðT − nÞ

Y0
i=n

½1−HðT − iÞ�
Y0
i=n

½1−AðT − iÞ�

[S4]
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The approximation in the second line of the equation is justified
because the higher terms in the numerator become exponentially
smaller. This approximation makes Eqs. S5 and S6 deviate slightly
from the true optimal solution. For simplicity, however, we use the
term “optimal” (instead of nearly optimal) for those equations
throughout the paper.
Subjects should switch environment when PO> 1, that is,

when

1
Y0
i=n

½1−AðT − iÞ�
>

Y0
i=n

½1−HðT − iÞ�

HðT −nÞ [S5]

or

X0
i=n

log
1

1−AðT − iÞ> − log½HðT − nÞ�+
X0
i=n

log½1−HðT − iÞ�. [S6]

Eq. S6 suggests that accumulation of switch evidence, represented
by logf1=½1−AðTÞ�g, toward a switch bound, represented by

−log½HðT − nÞ�+ P0
i= n

log½1−HðT − iÞ�, is an optimal solution for

this task. The first term in the right-hand side of Eq. S6,
−log½HðT − nÞ�, shows that the switch bound depends on the
location of the first negative feedback in the sequence of trials
within the environment. This dependence contributes to switch
urgency if subjective hazard rates grow over time. The second
term in the right-hand side of Eq. S6, log½1−HðT − iÞ�, is neg-
ative because HðTÞ is bounded between zero and 1. This bound
collapse contributes to the switch urgency as the number of
consecutive negative feedbacks increases.
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are model fits. All subjects were more likely to switch environment choices following negative feedback on trials with stronger motion. Error bars are SE.
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Fig. S5. Increased switch bound explains reduced switch rates for longer environments. Shown are data and model fits from five subjects who performed the
task with longer and less volatile environments (blue; environment length, 3–20 trials, mean = 10 trials) compared with the original experiment with shorter
environments (red; environment length, 2–15 trials, mean = 6 trials). (A) Subjects switched less frequently following negative feedback when environments
were longer. Switching still depended on motion strength and feedback on previous trials, but switch rates were lower for all motion strengths. Lines are
model fits. The red data points and line are identical to the colored circles and dashed line in Fig. 2B. (B) Subjects were less likely to switch following runs of
consecutive negative feedback when environments were longer. Lines are model fits. The red line and data points are identical to Fig. 3A. (C) When the
environments were longer, switching after errors was less frequent and increased more gradually with number of trials spent in an environment. The red data
points and line are identical to Fig. 5A. (D) Subjects used larger switch bounds for longer environments. The lines show the average collapsing switch bounds
for the five new subjects who experienced longer environment durations (blue) and the six subjects who experienced shorter environment durations (red).
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motion direction confidence. The task structure is identical to our main experiment except that the targets are replaced with elongated bars (length 7°).
Subjects varied the end point of their eye movements along the length of the bar to indicate motion direction choice confidence (green, minimal confidence;
red, maximal confidence) (4). (B) Subjects were more likely to switch environment choices following negative feedback on trials in which they reported higher
subjective confidence. Data points show the mean proportion of environment switches as a function of the saccade end point along the length of each target.
Saccade end points are divided into six quantiles. (C) Subjects were more likely to switch environment choices when subjective confidence was higher for the
same motion strength and duration. Probability of switching is plotted as a function of residual variations of saccade end points after subtracting the mean of
end points for the motion strength and duration (SI Text). Error bars are SE.
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choices using the sensitivity (k) and decision bound (Bd) on the sensory decision variable. Then, we predicted ideal switch performance based on the optimal
form of switch evidence and switch bound given the expected accuracy from the sensory decision process and the experienced hazard rate (Materials and
Methods). No probability weighting function was applied, and switch noise was excluded. We focused on error sequences that began when the hazard rate
was larger than zero (trial three onward). (A) Accumulation of sensory evidence to a decision bound explains the proportion of correct motion direction
choices. (B) The proportion of switches increases after negative feedback for choices associated with greater expected accuracy for both model predictions and
subjects, but subjects’ overall switch rates are lower. (C) The switch rate increases with consecutive negative feedbacks for both model predictions and subjects,
but subjects’ switch rates increase at a slower rate. (D) On the first trial after an environment change, the probability of switching to the correct environment
depends on motion strength on the change trial (trial 0) for both model predictions and subjects. However, again, subjects perseverated in the old envi-
ronment longer than predicted by the optimal model.

Table S1. Best fitting parameters (± SE) of the uncertainty accumulation model

Subject k Bd σe B0 γ

S1 0.48 ± 0.002 40.91 ± 2.942 0.84 ± 0.009 0.12 ± 0.003 1.89 ± 0.030
S2 0.39 ± 0.002 49.36 ± 5.296 1.00 ± 0.010 0.09 ± 0.002 2.57 ± 0.045
S3 0.65 ± 0.003 18.69 ± 0.218 1.77 ± 0.015 0.05 ± 0.002 2.00 ± 0.022
S4 0.27 ± 0.003 40.16 ± 7.843 0.81 ± 0.034 0.10 ± 0.005 1.84 ± 0.049
S5 0.37 ± 0.003 22.90 ± 0.965 0.82 ± 0.019 0.14 ± 0.005 2.18 ± 0.073
S6 0.51 ± 0.003 61.35 ± 7.027 0.91 ± 0.010 0.04 ± 0.002 1.82 ± 0.019

The main model in our experiment did not include leakage (λ = 0) and included perfect
evidence resets following positive feedback (q = −∞). B0 and γ determined the switch
bound, Be (Eqs. 15 and 16, Fig. 5C, and Materials and Methods), and ω was set to 1
according to the optimal model. These parameters generated the fits shown in Figs. 2,
3, and 5 and Figs. S1, S2, and S4 (lines).

Table S2. Logistic regression coefficients for Eqs. 1−8 (Materials and Methods)

Equation β0 β1 β2 β3

Eq. 1 — 10.1 ± 0.26 (P < 10−10) 0.4 ± 0.09 (P = 3.8 × 10−7) —

Eq. 2 −1.0 ± 0.06 (P < 10−10) 6.2 ± 0.23 (P < 10−10) 0.3 ± 0.15 (P = 0.03) —

Eq. 3 −2.9 ± 0.11 (P < 10−10) 5.9 ± 0.26 (P < 10−10) 0.3 ± 0.18 (P = 0.06) 1.5 ± 0.06 (P < 10−10)
Eq. 4 −4.5 ± 0.30 (P < 10−10) 0.5 ± 0.69 (P = 0.49) — —

Eq. 5 0.5 ± 0.06 (P < 10−10) 1.6 ± 0.31 (P = 6.61 x 10−7) 9.9 ± 0.95 (P < 10−10) 35.6 ± 3.99 (P < 10−10)
Eq. 6 0.6 ± 0.08 (P < 10−10) 4.9 ± 0.58 (P < 10−10) 1.9 ± 0.76 (P = 0.01) −12.9 ± 3.32 (P = 1.0 × 10−4)
Eq. 7 0.8 ± 0.08 (P < 10−10) 2.0 ± 0.35 (P = 2.2 × 10−8) −1.8 ± 0.37 (P = 1.5 × 10−6) —

Eq. 8 −2.3 ± 0.08 (P < 10−10) 5.9 ± 0.24 (P < 10−10) 0.4 ± 0.16 (P = 0.01) 0.3 ± 0.01 (P < 10−10)

All coefficients were calculated using maximum likelihood fitting. Trials are pooled across subjects.
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